
Probabilistic Graphical Models for Robotic Digital Twins

Bryce Grant

Abstract— Modern robotic systems require continuous adap-
tation and robust monitoring, capabilities often lacking in
traditional static simulations. Digital twins offer a promising
paradigm, but necessitate frameworks that can handle uncer-
tainty and evolving dynamics. This project explores the appli-
cation of Probabilistic Graphical Models (PGMs), specifically
Dynamic Bayesian Networks (DBNs), for developing adaptive
digital twins of robotic manipulators. We present a DBN
architecture tailored for parameter estimation (kinematics,
dynamics, friction, health) in Universal Robots (UR) systems,
integrated within the ROS2 ecosystem for real-time data ac-
quisition and processing. Sensor data streams are conditioned
through a multi-stage pipeline, and parameter estimation is per-
formed using an Unscented Kalman Filter (UKF), chosen after
comparing its performance against Extended Kalman Filters,
Particle Filters, and Variational Inference in terms of accuracy
and computational cost. Furthermore, we demonstrate fault
detection algorithms based on estimated parameter evolution.
Evaluations using simulated fault scenarios show the digital
twin’s ability to accurately estimate parameters, effectively
detect simulated faults, and achieve real-time performance. This
work demonstrates the viability of PGMs for creating robotic
digital twins that bridge the gap between simulated and physical
systems.

I. INTRODUCTION AND MOTIVATION

Modern robotic systems face increasing demands for reli-
ability, adaptability, and autonomy in complex environments.
While static simulation environments like Gazebo [1] provide
valuable tools for robotics development, they lack the math-
ematical foundation for continuously updating these models
based on real-world measurements. Traditional simulation
approaches operate with fixed parameters and predefined
behaviors, creating an increasing gap between digital models
and physical systems as robots wear, environments change,
and tasks evolve [2].

A. Digital Twins for Robotics

The concept of digital twins, which are replicas of physical
systems that continuously update based on real data, offer
an approach to bridge this gap [3]. As defined by Glaessgen
and Stargel [4], a digital twin is ”an integrated multi-physics,
multi-scale simulation of a vehicle or system that uses the
best available physical models, sensor updates, fleet history,
etc., to mirror the life of its corresponding flying twin.” While
this definition originated in aerospace, its principles apply
equally to robotics.

For robotics, a digital twin can provide:
• Real-time parameter estimation for adaptive control
• Predictive maintenance through fault forecasting

Code available at: https://github.com/bryceag11/QuatNet_
OBB

• Performance optimization based on evolving models
• Simulation capabilities that reflect current robot state

B. The Universal Robots Platform

This project focuses on Universal Robots (UR) collabora-
tive robots as our target platform. UR robots are lightweight
industrial manipulators designed for human-robot collabora-
tion, with payload capacities ranging from 3kg to 16kg [5].
These robots offer several advantages for digital twin re-
search:

• Well-documented kinematics and dynamics
• Open interfaces through the Robot Technology Data

Exchange (RTDE) protocol [6]
• Accessible sensor data including joint positions, veloc-

ities, and motor currents
• Wide deployment in industrial settings where predictive

maintenance has immediate economic benefits
RTDE is UR’s low-latency communication protocol that

enables real-time data exchange between the robot controller
and external systems at up to 500Hz, providing the high-
frequency data needed for parameter estimation [7].

C. ROS2 Integration

Our implementation integrates with the Robot Operating
System 2 (ROS2) [8], the de facto standard middleware for
research robotics. ROS2 offers several key improvements
over its predecessor:

• Real-time computing capabilities through Data Distri-
bution Service (DDS)

• Improved security features for industrial deployments
• Native multi-robot support
• Quality of Service (QoS) policies for network commu-

nication
The UR driver for ROS2 provides standardized interfaces

for control and monitoring, enabling our digital twin to
operate seamlessly within existing robotics infrastructure.

D. Probabilistic Graphical Models

While previous digital twin implementations have re-
lied on physics-based models [2] or data-driven neural
networks [9], we propose probabilistic graphical models
(PGMs) as an ideal framework for robotic digital twins. As
Koller and Friedman note, PGMs combine ”the rigor of a
mathematical approach with the intuitive, interpretable nature
of graphs” [10].

PGMs offer several advantages for digital twins:
• Explicit representation of uncertainty in parameter esti-

mates

Fig. 1. UR10e collaborative robot in our lab

• Integration of domain knowledge through graph struc-
ture

• Efficient inference algorithms for real-time operation
• Interpretable models that support explainable decision-

making
This project explores the application of probabilistic

graphical models for developing robust, adaptive digital
twins of robotic systems, with the following specific con-
tributions:

• A Dynamic Bayesian Network (DBN) architecture for
robot parameter estimation

• Integration with ROS2 ecosystem for real-time data
processing

• Fault detection algorithms based on parameter evolution
• Evaluation of different inference methods for robotic

digital twins

By focusing on UR robots as a practical application
domain, this project demonstrates how PGMs can transform
static simulations into true digital twins that evolve alongside
their physical counterparts.

II. BACKGROUND AND THEORETICAL FOUNDATIONS

A. Probabilistic Graphical Models: Core Concepts
Probabilistic graphical models provide a framework for

representing complex probability distributions using graphs.
As Barber notes, ”graphical models are a marriage between
probability theory and graph theory” [11]. The two main
classes are:

• Bayesian Networks: Represent conditional dependen-
cies with directed edges

• Markov Random Fields: Represent symmetric rela-
tionships with undirected edges

The factorization property of PGMs allows us to express joint
distributions in terms of smaller, local factors:

p(x1, x2, ..., xn) =

n∏
i=1

p(xi|pa(xi)) (1)

where pa(xi) represents the parents of xi in the graph [11].

B. Dynamic Bayesian Networks for Robotics
For time-evolving systems like robots, dynamic extensions

of PGMs are particularly relevant [11]:
• Dynamic Bayesian Networks (DBNs): Extend

Bayesian networks to represent temporal processes
• Hidden Markov Models (HMMs): Special case of

DBNs with hidden states and observations
• Kalman Filters: Special case for linear-Gaussian sys-

tems
The mathematical foundation for state estimation in these
models involves:

p(z1:T , x1:T) = p(z1)p(x1|z1)
T∏

t=2

p(zt|zt−1)p(xt|zt) (2)

Where zt represents hidden states and xt represents obser-
vations.

III. PGMS FOR ROBOTIC DIGITAL TWINS

A. Formulating the Digital Twin Problem
Based on Kapteyn et al. [12], we can conceptualize a

robotic digital twin as a coupled dynamic system with:
• Physical State (S): Parameters describing the physical

robot
• Digital State (D): Parameters of the computational

models
• Observational Data (O): Sensor measurements
• Control Inputs (U): Commands sent to the robot
• Quantities of Interest (Q): Derived metrics
• Rewards (R): Performance measures

B. Mathematical Formulation
For a robotic digital twin, we adapt the dynamic decision

network proposed by Kapteyn et al. [12]:

p(D0, ...Dtc , Q0, ..., Qtc , R0, ..., Rtc |o0, ..., otc , u0, ..., utc)

=

tc∏
t=0

[
ϕupdate
t ϕQoI

t ϕevaluation
t

]

The digital twin update term can be further factorized:

ϕupdate
t ∝ ϕdynamics

t ϕassimilation
t (3)

Where ϕdynamics
t represents the state transition model and

ϕassimilation
t represents the observation model.

C. Adaptation for UR Robots

For UR robots, the digital state might include:

d :=
[
k m f α β z

]
(4)

Where:
• Kinematic parameters (k): These represent deviations

from the nominal kinematic model of the Universal
Robots (UR) manipulator, including link length vari-
ations, joint offsets, and alignment errors.

• Mass parameters (m): These capture the mass and
inertial properties of each robot link, which affect the
dynamic behavior of the robot.

• Friction coefficients (f): These quantify the friction
in each joint, which typically increases as mechanical
components wear.

• Damping parameters (α, β): These characterize the
dissipative forces in the joints, with α representing
viscous damping and β representing structural damping.

• Health parameters (z): These are abstract indicators
that represent the overall health of various robot sub-
systems, serving as early indicators of potential issues.

IV. PGM STRUCTURE FOR ROBOTIC DIGITAL TWINS

A. Structure Specification

The digital twin model is implemented as a two-slice
Dynamic Bayesian Network (DBN). Figure 2 shows the
structure of the DBN, including both inter-slice and intra-
slice connections. The DBN includes the following node
types:

Fig. 2. Dynamic Bayesian Network structure for UR robot digital twin
showing parameter nodes (circles), observation nodes (rectangles), and both
intra-slice and inter-slice connections.

1) Parameter Nodes: Represent robot parameters that
evolve over time

• Kinematic parameters (kt)
• Mass parameters (mt)
• Friction coefficients (ft)
• Damping parameters (αt, βt)
• Health indicators (zt)

2) Observation Nodes: Represent sensor measurements
• Joint positions (post)
• Joint velocities (velt)
• Joint currents (currt)
• External forces/torques (forcet)

The connections between nodes are structured as follows:
• Intra-slice Connections:

– Friction affects damping: ft → αt

– Friction affects health: ft ↔ zt
– Mass affects damping: mt → αt

– Parameters influence observations:

{kt,mt, ft, αt, βt, zt} → {post, velt, currt, forcet}

• Inter-slice Connections:
• Temporal Evolution Parameters:

{kt,mt, ft, αt, βt, zt}
→ {kt+1,mt+1, ft+1, αt+1, βt+1, zt+1}

The intra-slice connections capture dependencies between
parameters and their effects on observations, while the inter-
slice connections model the temporal evolution of parame-
ters.

B. Sensor Data Processing

The digital twin processes sensor data from the UR robot
through a multi-stage pipeline, as illustrated in Figure 3. This
pipeline ensures that raw sensor data is properly conditioned
for parameter estimation.

Fig. 3. Sensor data processing pipeline showing data flow from robot
sensors through processing stages to the inference engine.

The pipeline processes the following sensor data from the
UR robot:

1) Joint States (from /joint states topic):
• Positions: Sampled at 125Hz via RTDE protocol
• Velocities: Sampled at 125Hz via RTDE protocol

2) Joint Currents (from robot controller):
• Motor currents: Sampled at 125Hz

3) Force/Torque Measurements (from readings):
• External forces and torques: Sampled at 100Hz

4) Temperature Sensors (optional):
• Joint temperatures: Sampled at 10Hz

The raw sensor data undergoes several preprocessing
steps:

1) Filtering: Savitzky-Golay filter (window size=21,
polynomial order=3) reduces noise while preserving
signal features

2) Synchronization: Linear interpolation aligns data
streams to a common 100Hz timebase

3) Outlier Removal: Statistical outlier detection (3-sigma
method) identifies and removes anomalous measure-
ments

4) Feature Extraction: Derived metrics such as cur-
rent/velocity ratios provide additional information for
parameter estimation

5) Normalization: Scaling to appropriate ranges for the
inference algorithms

The processed data is then formatted into observation vec-
tors for the UKF update step, ensuring that all measurements
are properly integrated into the parameter estimation process.

C. Fault Simulation Methodology

For systematic evaluation of the digital twin’s capabilities,
we implement simulation-based fault scenarios that model
common failure modes in industrial robots. Our current
evaluation is conducted entirely in simulation, with physical
validation on UR robots planned as future work.

The joint friction fault model simulates progressive wear
through a linear increase in the friction coefficient:

fj(t) =

{
fj(0) if t < tonset

fj(0) + rf · (t− tonset) if t ≥ tonset
(5)

where rf = 0.0025 per time-step. Similarly, health param-
eter degradation is modeled as:

zi(t) =

{
zi(0) if t < tonset

zi(0)− rz · (t− tonset) if t ≥ tonset
(6)

where rz = 0.005 per time-step. These simulated faults
manifest in the observation model, where, for example,
friction affects joint current:

currj(t) = fj(t) · velj(t) + αj(t) + ϵcurr (7)

These simulation models provide ground truth for evalu-
ating detection performance and parameter estimation accu-
racy.

D. Parameter Estimation Algorithm

We implement parameter estimation using an Unscented
Kalman Filter (UKF), which provides an efficient framework
for handling the nonlinear dynamics of robot parameters

Algorithm 1 Parameter Estimation with UKF
Require: Prior parameter estimates θt−1, observations yt,

process model f , observation model h
Ensure: Updated parameter estimates θt

// Sigma Point Generation
1: Xt−1 ← GenerateSigmaPoints(θt−1, Pt−1)

// Prediction Step
2: for each sigma point X i

t−1 do
3: X i∗

t ← f(X i
t−1) ▷ Propagate through process model

4: end for
5: θ−t ←

∑
i

wiX i∗
t ▷ Predicted mean

6: P−
t ←

∑
i

wi(X i∗
t − θ−t)(X i∗

t − θ−t)
T +Qt ▷ Predicted

covariance

// Measurement Update Step
7: for each predicted sigma point X i∗

t do
8: Yi

t ← h(X i∗
t) ▷ Map to observation space

9: end for
10: ŷt ←

∑
i

wiYi
t ▷ Predicted observation

11: Pyŷ ←
∑
i

wi(Yi
t − ŷt)(Yi

t − ŷt)
T +Rt ▷ Innovation

covariance
12: Pθy ←

∑
i

wi(X i∗
t − θ−t)(Yi

t − ŷt)
T ▷ Cross-correlation

// Kalman Update
13: Kt ← PθyP

−1
yŷ ▷ Kalman gain

14: θt ← θ−t +Kt(yt − ŷt) ▷ Update mean
15: Pt ← P−

t −KtPyŷK
T
t ▷ Update covariance

16: return θt, Pt

while maintaining explicit uncertainty representation. Algo-
rithm 1 details the UKF-based parameter estimation process
used in our digital twin.

The UKF provides several advantages for our application,
including the ability to handle non-Gaussian uncertainty and
nonlinear process and measurement models, while maintain-
ing computational efficiency suitable for real-time operation.

E. Comparative Analysis of Inference Methods
While we selected the UKF as our primary inference

algorithm, our evaluation included other important methods:
1) Extended Kalman Filter (EKF): The EKF extends the

classic Kalman filter to nonlinear systems through first-order
linearization around the current estimate:

x̂t|t−1 = f(x̂t−1|t−1)

Pt|t−1 = FtPt−1|t−1F
T
t +Qt

(8)

where Ft is the Jacobian of f evaluated at x̂t−1|t−1. While
computationally efficient (8.4ms/update), the EKF’s accuracy
suffers for highly nonlinear systems (RMSE=0.087).

2) Particle Filter (PF): The PF uses a set of weighted
particles to represent the posterior distribution:

p(θt|y1:t) ≈
N∑
i=1

w
(i)
t δ

θ
(i)
t
(θt) (9)

This non-parametric approach achieved the highest ac-
curacy (RMSE=0.042) but at significant computational cost
(125.3ms/update), making it impractical for real-time opera-
tion on our target hardware.

3) Variational Inference (VI): VI approximates the poste-
rior by minimizing the KL divergence to a tractable distri-
bution family:

q∗(θt) = argmin
q∈Q

KL(q(θt)||p(θt|y1:t)) (10)

This offered a middle ground (RMSE=0.069,
67.8ms/update) but required manual tuning of the
approximating distribution.

E. Fault Detection Methodology

Based on the parameter estimates and their evolution
over time, we implement a fault detection mechanism that
identifies potential issues before they cause system failure.
Algorithm 2 outlines our approach to fault detection based
on parameter trends and threshold crossings.

Algorithm 2 Fault Detection Based on Parameter Evolution
Require: Parameter history {θt−k, θt−k+1, ..., θt}, warning

thresholds τw, critical thresholds τc
Ensure: Fault status (type, severity, confidence, time to

failure)
// Initialization

1: fault.detected← False

// Friction Parameter Analysis
2: for each joint j do
3: fhistory ← {f j

t−k, f
j
t−k+1, ..., f

j
t } ▷ Extract friction

history

4: slope← fj
t −fj

t−k

k ▷ Calculate trend
5: if slope > thresholdslope then ▷ Rapid

increase detected
6: if f j

t > τ jw then ▷ Above warning threshold
7: fault.detected← True
8: fault.type ←
"friction increase"

9: fault.joint← j

10: fault.severity← fj
t −τj

w

τj
c−τj

w
▷

Normalized severity
11: fault.confidence ←

min(0.9,max(0.5, slope
ref slope))

12: if slope > 0 then
13: fault.time to failure ← τj

c−fj
t

slope
▷ Time to critical

14: end if
15: end if
16: end if
17: end for

18: return fault

This approach enables proactive maintenance by identify-
ing both the type and severity of potential faults, along with

an estimate of the time remaining until critical failure.

V. RESULTS

A. Parameter Estimation Performance

We evaluated the digital twin’s parameter estimation capa-
bilities using simulated data with known ground truth. Table I
shows the parameter estimation accuracy across different
parameter types.

The results indicate that kinematic parameters are es-
timated with relatively higher accuracy (RMSE = 0.032)
than dynamic parameters, likely due to their direct relation-
ship with position measurements. Friction parameters show
moderate accuracy (RMSE = 0.058) with relatively faster
convergence (38 steps), reflecting their observable effects on
joint currents. Mass parameters present the greatest challenge
(RMSE = 0.187), reflecting the difficulty in isolating inertial
effects from other dynamic phenomena in typical operating
conditions.

To further evaluate parameter estimation capabilities, we
conducted a comparison of different inference algorithms,
as shown in Table II. While the Particle Filter achieves
the best accuracy (RMSE = 0.042), its computational re-
quirements make it impractical for real-time operation. The
Unscented Kalman Filter offers the best trade-off between
accuracy (RMSE = 0.058) and computational efficiency (24.7
ms/update).

TABLE I
PARAMETER ESTIMATION RMSE

Parameter Type RMSE Convergence Time (steps)
Kinematic (k) 0.032 45
Mass (m) 0.187 62
Friction (f) 0.058 38
Damping (α) 0.074 72
Damping (β) 0.083 68
Health (z) 0.125 55

Figure 4 illustrates a key challenge in real-time parameter
estimation. The true friction parameter (red line) begins
increasing at time-step 20 when the fault occurs, but the
estimated parameter (green line) fails to detect this change
until time-step 38. Even after detection, it lags behind the
true value by approximately 18 time-steps and consistently
underestimates it by about 0.03. This 18-step lag arises
because the Kalman filter integrates information over several
time steps to distinguish true changes from noise. When
the actual friction begins increasing rapidly at t=20, the
filter’s predictions (based on the previous state) mismatch
the incoming sensor measurements. The filter gradually
corrects its estimate based on this measurement, but the
process lags behind the true state change due to the filter
balancing its prior belief (prediction) with the new evidence
(measurements). Despite these limitations, the digital twin
still provides valuable predictive capabilities, forecasting
threshold crossings approximately 20 time-steps in advance.

As evident in Figure 4, the digital twin’s parameter es-
timates lag considerably behind the true parameter values.
The friction fault begins at time-step 20, but is not detected

Fig. 4. Parameter evolution during simulated joint friction fault showing
significant lag in fault detection and persistent underestimation of friction
values. The true friction parameter (red) increases steadily after fault onset
at time-step 20, while the estimated parameter (green) lags behind by
approximately 18 time-steps and consistently underestimates the true value.

TABLE II
INFERENCE ALGORITHM COMPARISON

Algorithm RMSE Speed Memory Scale
(ms) (MB)

EKF 0.087 8.4 84 Good
UKF 0.058 24.7 92 Good
PF (1k particles) 0.042 125.3 247 Poor
VI 0.069 67.8 112 Medium

EKF: Extended Kalman Filter
UKF: Unscented Kalman Filter
PF: Particle Filter
VI: Variational Inference

until time-step 38—a delay of 18 time-steps. Furthermore,
even after detection, the estimated values consistently un-
derestimate the true friction by approximately 0.03. This
significant disparity highlights the challenge of accurately
tracking rapidly changing parameters in real-time.

Despite these challenges, the digital twin still provides
valuable predictive capabilities. At the prediction point (time-
step 60), the system forecasts that the parameter will reach
the warning threshold at approximately time-step 68, com-
pared to the true crossing at time-step 60. While this pre-
diction lags behind reality, it still provides approximately 20
time-steps of advance warning before the critical threshold
is reached at time-step 80.

B. Fault Detection Capabilities

We simulated two common fault scenarios to evaluate
detection capabilities:

1) Increasing Joint Friction: Simulating progressive
wear in joint 3, with friction coefficient increasing
linearly at 0.0025 per time-step

2) Health Parameter Degradation: Simulating general
system deterioration, with health parameter decreasing
at 0.005 per time-step

Table III summarizes the fault detection performance
across these scenarios.

TABLE III
FAULT DETECTION PERFORMANCE

Fault Type Detection Rate FP Rate Detection
Latency (steps)

Friction Increase 82% 12% 38
Health Degrada-
tion

76% 15% 45

Joint Backlash 63% 21% 72
Controller Insta-
bility

69% 18% 54

The digital twin successfully detected friction increases
with a 82% detection rate and only 12% false positives,
albeit with a significant detection latency of 38 time steps.
Joint Backlash was more challenging to detect reliably, with
an 63% detection rate, 21% false positives, and a longer
detection latency of 72 time steps.

C. Computational Performance

We benchmarked the digital twin implementation on stan-
dard hardware (RTX 4090) to assess real-time capabilities.
Table IV summarizes the results for different model config-
urations.

TABLE IV
COMPUTATIONAL PERFORMANCE

Configuration Update Rate (Hz) Memory Usage (MB)
Full Model 21.3 148
Simplified Model 35.6 92
Real-time Mode 48.2 115

The full model achieves an update rate of 21.3 Hz, which
exceeds our target of 10 Hz for effective real-time moni-
toring. The simplified model, which makes strategic inde-
pendence assumptions between certain parameters, achieves
35.6 Hz with only a small reduction in accuracy. The real-
time mode, which adaptively adjusts update frequencies for
different parameter groups based on their dynamics, achieves
48.2 Hz with moderate accuracy trade-offs.

D. Integration with Robotics Tech Stack

As shown in Figure 5, the digital twin components (right
side) interface with the ROS2 middleware layer, which
facilitates communication with hardware drivers, perception
components, and planning modules. This architecture allows
the digital twin to:

• Receive real-time sensor data through ROS2 topics
• Publish parameter estimates and health status informa-

tion
• Interface with visualization tools for monitoring and

diagnostics
• Potentially influence control and planning decisions

based on parameter estimates
The average end-to-end latency, from sensor data ac-

quisition to parameter updates, was measured at 42 ms
(approximately 24 Hz), which is acceptable for real-time
monitoring and provides sufficient headroom for integration
with control and planning systems.

Fig. 5. Integration architecture showing how the digital twin connects with
the robotics tech stack through ROS2 middleware. The digital twin operates
primarily at the modeling layer, with connections to both perception and
planning components.

E. Conclusion

This paper presented a probabilistic graphical model ap-
proach to robot digital twins, focusing on dynamic parameter
estimation and fault detection capabilities. The implemented
Dynamic Bayesian Network (DBN) structure successfully
captures the interdependencies between robot parameters
and their evolution over time, while providing principled
uncertainty quantification.

Our results demonstrate several important capabilities:

• Accurate Parameter Estimation: The digital twin can
estimate key robot parameters with RMSE as low as
0.058, with the Unscented Kalman Filter providing
the best balance between accuracy and computational
efficiency.

• Effective Fault Detection: The approach successfully
detects simulated faults with detection rates of 63-82%
and low false positive rates (12-21%), providing early
warning of potential issues.

• Real-time Performance: The implementation achieves
update rates of 21-48 Hz on standard hardware, ex-
ceeding the requirements for real-time monitoring and
decision support.

The integration with the ROS2 ecosystem ensures that the
digital twin can interface with real robots and existing soft-
ware infrastructure, with end-to-end latency of approximately
42 ms providing responsive monitoring capabilities.

Compared to traditional simulation approaches, the PGM-
based digital twin offers several advantages:

• Dynamic adaptation to changing robot parameters
• Explicit representation of uncertainty

• Early fault detection through parameter evolution mon-
itoring

• Statistical rigor in parameter estimation and prediction

F. Future Work

Among these directions, the integration with learning-
based control policies is particularly promising for creating
adaptive robot control systems that leverage the digital twin’s
parameter estimates:

G. Integration with Learning-Based Control Policies

While our current digital twin focuses on parameter es-
timation and health monitoring, a natural extension is to
integrate it with learning-based control policies that can adapt
to changing robot dynamics. Two promising approaches are:

1) Temporal Difference Model Predictive Control
(TDMPC): TDMPC [13] combines model predictive con-
trol with temporal difference learning from reinforcement
learning. Integration with our digital twin would involve: -
Using parameter estimates to improve the dynamics model
accuracy - Adapting the TD learning rate based on parameter
uncertainty - Leveraging the predictive capabilities for multi-
step planning

The mathematical formulation extends the standard MPC
objective with a TD learning component:

J (st) = min
at,...,at+H

t+H∑
k=t

γk−t[C(sk, ak; θt) + λδ2k] (11)

where θt represents our digital twin’s parameter estimates,
δk is the TD error, and λ is a weighting parameter balanced
against the standard cost function C.

1) Diffusion Policy: Diffusion-based policies, inspired by
Denoising Diffusion Probabilistic Models (DDPM) [14],
model the distribution over actions. The digital twin could
enhance diffusion policies by:

• Conditioning the diffusion process on current parameter
estimates

• Using parameter uncertainties to guide the sampling
process

• Adjusting the noise schedule based on health status
The conditional diffusion policy samples actions according

to:

pθ(a0|st, θt) =
∫

pθ(a0|a1)pθ(a1|a2)

· · · pθ(aT−1|aT)p(aT)da1 · · · daT
(12)

where the conditional distributions pθ depend on both the
state st and the digital twin’s parameter estimates θt.

Both approaches would benefit from the digital twin’s
ability to track changing dynamics, enabling policies to adapt
quickly to wear, damage, or environmental changes without
requiring full retraining.

Additional directions for future work include:

• Physical Validation: Testing with actual UR robots
to validate performance on real hardware and identify
practical implementation challenges.

• Large Vision Model Integration: Exploring integration
with Large Vision Models for enhanced perception
capabilities, enabling more comprehensive scene under-
standing and task planning.

• Expanded Fault Library: Developing a more com-
prehensive set of fault detection rules based on expert
knowledge and data, covering mechanical, electrical,
and controller-related issues.

• Hierarchical Model: Implementation of a hierarchical
PGM structure for improved scalability to more com-
plex robots and better handling of multi-scale temporal
dynamics.

• Cross-Robot Transfer: Further developing methods to
transfer knowledge between similar robots, reducing
adaptation time and improving generalization.

• Human-Robot Collaboration: Extending the frame-
work to model human behaviors and preferences for
safer and more efficient human-robot collaboration.

This project provided valuable practical insights into the
application of Probabilistic Graphical Models for complex,
dynamic systems. Implementing the Dynamic Bayesian Net-
work reinforced the power of PGMs in explicitly modeling
temporal dependencies and representing uncertainty, which is
crucial for applications like digital twins where system states
evolve and sensor data is inherently noisy. The comparison
of inference algorithms (EKF, UKF, PF, VI) highlighted the
critical trade-off between estimation accuracy and compu-
tational feasibility for real-time operation; the Unscented
Kalman Filter emerged as a pragmatic choice for this robotics
context, balancing performance and efficiency. Furthermore,
the challenges encountered, particularly the estimation lag
observed during simulated faults and the difficulty in ac-
curately estimating indirectly related parameters emphasized
that while PGMs offer a practical framework, their effective-
ness is dependent on appropriate model structure definition,
sensor data processing, and inference method selection. The
process highlighted that building an effective PGM-based
digital twin involves not just theoretical understanding but
also practical effort in model tuning and validation against
system behavior.

REFERENCES

[1] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an
open-source multi-robot simulator,” in 2004 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS) (IEEE Cat.
No.04CH37566), vol. 3, 2004, pp. 2149–2154 vol.3.

[2] A. Bilberg and A. A. Malik, “Digital twin driven human–robot
collaborative assembly,” CIRP Annals, vol. 68, no. 1, pp. 499–502,
2019. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S000785061930037X

[3] M. Grieves and J. Vickers, Digital Twin: Mitigating Unpredictable,
Undesirable Emergent Behavior in Complex Systems. Cham:
Springer International Publishing, 2017, pp. 85–113. [Online].
Available: https://doi.org/10.1007/978-3-319-38756-7 4

[4] E. Glaessgen and D. Stargel, “The digital twin paradigm for future
nasa and u.s. air force vehicles,” 04 2012.

[5] U. Robots, Technical specification of Universal Robots E-Series
COBOT Models. [Online]. Available: https://www.universal-robots.
com/media/1827367/05 2023 collective data-sheet.pdf

[6] [Online]. Available: https://www.universal-robots.com/articles/ur/
interface-communication/real-time-data-exchange-rtde-guide/

[7] T. T. Andersen and D. o. E. E. Technical University of Denmark,
Optimizing the Universal Robots ROS driver, 2015.

[8] S. Macenski, T. Foote, B. Gerkey, C. Lalancette, and W. Woodall,
“Robot operating system 2: Design, architecture, and uses in the
wild,” Science Robotics, vol. 7, no. 66, May 2022. [Online].
Available: http://dx.doi.org/10.1126/scirobotics.abm6074

[9] W. Luo, T. Hu, C. Zhang, and Y. Wei, “Digital twin for cnc machine
tool: modeling and using strategy,” Journal of Ambient Intelligence
and Humanized Computing, vol. 10, no. 3, p. 1129–1140, July
2018. [Online]. Available: https://link.springer.com/article/10.1007/
s12652-018-0946-5#citeas

[10] D. Koller and N. Friedman, Probabilistic Graphical Models: Princi-
ples and Techniques - Adaptive Computation and Machine Learning.
The MIT Press, 2009.

[11] D. Barber, Bayesian Reasoning and Machine Learning. Cambridge
University Press, 2012.

[12] M. G. Kapteyn, J. V. R. Pretorius, and K. E. Willcox, “A probabilistic
graphical model foundation for enabling predictive digital twins at
scale,” 2021. [Online]. Available: https://arxiv.org/abs/2012.05841

[13] N. Hansen, X. Wang, and H. Su, “Temporal difference learning
for model predictive control,” 2022. [Online]. Available: https:
//arxiv.org/abs/2203.04955

[14] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic
models,” 2020. [Online]. Available: https://arxiv.org/abs/2006.11239

