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Abstract— Denoising Diffusion Probabilistic Models
(DDPMs) represent a powerful class of generative models that
has gained significant attention in recent years for high-quality
image synthesis and other generative tasks. This project
explores DPPMs through the lens of Markov chains and
stochastic processes, with a specific focus on their emerging
applications in robotics. We establish the foundations that make
these models effective for both general generation tasks and
robot control problems. DDPMs operate by defining a forward
diffusion process as a Markov chain that gradually adds
Gaussian noise to data, and then learning a reverse process
that iteratively denoises random noise into samples resembling
the original data distribution. In the robotics domain, this
framework enables us to formulate robot policies by denoising
actions. We will examine the mathematical framework of
DDPMs, particularly focusing on their connection to stochastic
differential equations and how they leverage Markov chains.
Additionally, we will implement a DDPM model, NoProp,
for image classification on the Fashion MNIST dataset,
demonstrating how these models can generalize on state of
the art datasets. This project aims to bridge the gap between
recent advances in deep generative modeling, stochastic
processes, and practical robotics applications.

I. INTRODUCTION

Generative modeling has evolved significantly with the
emergence of diffusion models, which provide a unique
approach to generating complex data distributions. Denois-
ing Diffusion Probabilistic Models (DDPMs) represent a
significant advancement in generative modeling, combin-
ing principles from stochastic processes with deep learn-
ing architectures. Since their introduction by [1], diffusion
models have rapidly gained prominence in image synthesis,
demonstrating remarkable generation quality that rivals or
exceeds previous approaches such as Generative Adversarial
Networks (GANs) and Variational Autoencoders (VAEs).The
core innovation of diffusion models lies in their formulation
of the generative process as the reversal of a Markov chain
that gradually adds noise to data. This mathematical frame-
work has proven particularly powerful due to its stable train-
ing dynamics and expressivity, enabling diffusion models to
capture complex, multimodal distributions.

As we will demonstrate in this paper, the Markov chain
structure makes diffusion models not only valuable for
traditional generative tasks but also suitable for sequential
decision processes in robotics. By viewing a robot’s policy
as a process of gradually denoising random actions into
purposeful movements, diffusion models provide a novel
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approach to robot control that leverages their ability to model
complex distributions.

This paper explores the mathematical foundations of diffu-
sion models through the lens of Markov chains and stochastic
processes, with a specific focus on their emerging applica-
tions in robotics. We first establish the foundational theory of
DDPMs, highlighting their connections to Markov processes,
and then examine their application to robotics through the
lens of Diffusion Policy [2] and related frameworks.

II. RELATED WORKS

Denoising Diffusion Probabilistic Models represent an im-
portant advancement in generative modeling, building upon
several research threads and inspiring numerous applications.
This section explores the evolution of diffusion models and
their applications in various domains, with a particular focus
on robotics.

A. Diffusion Models in Generative Modeling

Diffusion models have emerged as powerful tools in
generative modeling, evolving from earlier approaches. The
foundational work by [3] introduced the concept of non-
equilibrium thermodynamics for deep unsupervised learning,
which laid the mathematical foundation for diffusion models.
Building on this foundation, [1] formalized the Denoising
Diffusion Probabilistic Models (DDPMs) framework, estab-
lishing the now-standard formulation of the forward and
reverse processes as Markov chains.

Further refinements were introduced by [4], who pro-
posed improvements to the noise scheduling and architec-
tural design that significantly enhanced the sample quality.
The connection between diffusion models and score-based
generative models was established by [5], who showed that
both approaches can be unified under a common framework
of stochastic differential equations (SDEs). This theoretical
bridge has enriched our understanding of the mathematical
properties of diffusion processes.

The computational efficiency of diffusion models was
addressed by [6], who developed Denoising Diffusion Im-
plicit Models (DDIM) that enable fewer sampling steps with
minimal loss in generation quality. This advancement has
been crucial for practical applications where inference speed
is important, such as robotics.

B. Applications in Vision and Language Domains

The versatility of diffusion models has led to their suc-
cessful application across multiple domains. In computer vi-
sion, [7] demonstrated that diffusion models can outperform
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GANs in image synthesis, establishing a new state-of-the-art
in generation quality. The capacity of diffusion models to
handle multimodal distributions has made them particularly
effective for tasks with inherent ambiguity.

Recent work has extended diffusion models to text gener-
ation [8], audio synthesis [9], and video generation [10]. The
application of diffusion models to 3D content generation, as
explored by [11], demonstrates their adaptability to different
data modalities and dimensional spaces.

In the domain of vision-language models, diffusion ap-
proaches have been used for text-to-image generation [12]
and text-guided image editing [13]. These applications show-
case the ability of diffusion models to effectively condition
generation on complex inputs, a capability that has direct
implications for robotics applications.

C. Diffusion Models in Robotics

The application of diffusion models to robotics repre-
sents a significant new direction with promising results.
[2] introduced Diffusion Policy, which reformulates robot
control as a conditional denoising diffusion process. This
approach offers several advantages for robotics, including
the ability to model multimodal action distributions, handle
high-dimensional action spaces, and maintain stable training
dynamics.

Further exploration of diffusion models in robotics in-
cludes the work by [14], who proposed 3D Diffusion Policy
(DP3) to improve generalization in visuomotor policy learn-
ing. Their approach leverages simple 3D representations to
enhance robustness to varying viewpoints and environmental
conditions, addressing a key challenge in robot learning.

Recent work by [15] introduces TinyVLA, a compact
vision-language-action model that combines pretrained mul-
timodal models with a diffusion policy decoder. This ap-
proach achieves fast inference speeds while maintaining high
performance, eliminating the need for extensive pretraining
on robotic datasets. TinyVLA demonstrates the synergy
between diffusion-based policy learning and multimodal
representation learning, offering a data-efficient path for
developing capable robotic systems.

D. Alternative Training Methods

An interesting extension of diffusion models is their
application to neural network training methodologies. [16]
introduced NoProp, a novel training approach inspired by
diffusion models that eliminates the need for backward
or forward propagation. This method represents a radical
departure from traditional gradient-based learning, poten-
tially opening new avenues for neural network training with
different computational characteristics.

The connection between NoProp and diffusion models
highlights the broader impact of the diffusion paradigm
beyond generative modeling. By viewing neural network
training through the lens of denoising processes, NoProp
establishes a conceptual bridge between diffusion models and
fundamental aspects of machine learning.

Fig. 1. Example of a diffusion model

E. Theoretical Connections to Markov Processes

The mathematical foundation of diffusion models is deeply
rooted in the theory of Markov processes. The forward
diffusion process in DDPMs defines a Markov chain that
gradually transforms data into noise according to a pre-
defined schedule. Similarly, the reverse process forms an-
other Markov chain that progressively removes noise to
generate samples.

The connection to continuous-time processes has been
explored by [5], who showed that as the number of dif-
fusion steps approaches infinity, the discrete Markov chain
converges to a continuous stochastic differential equation
(SDE). This connection provides additional theoretical tools
for analyzing diffusion models and opens possibilities for
more efficient sampling procedures.

The Markovian structure of diffusion models has been
particularly beneficial for robotics applications, as it aligns
well with the sequential nature of decision-making in robotic
control. By leveraging this property, approaches like Dif-
fusion Policy and TinyVLA have demonstrated superior
performance in robot learning tasks, particularly in scenarios
with complex, multimodal action distributions.

III. THEORETICAL FOUNDATIONS

A. Markov Chains and Diffusion Processes

At their core, diffusion models establish a principled
framework rooted in Markov chains. To understand this
connection, we begin by defining a Markov chain as a
stochastic process {Xt} where the conditional probability
distribution of future states depends only on the present state
and not on the sequence of events that preceded it:

P (Xt+1 = xt+1|Xt = xt, Xt−1 = xt−1, . . . , X0 = x0)

= P (Xt+1 = xt+1|Xt = xt)
(1)

Diffusion models leverage this property by defining two
Markov processes: a forward process that progressively adds
noise to data, and a reverse process that systematically
removes noise.

B. Forward Process as a Markov Chain

The forward process in a DDPM defines a sequence of
latent variables x1, x2, . . . , xT obtained by gradually adding
Gaussian noise to an initial data point x0 according to a
predefined variance schedule {βt}Tt=1. Mathematically, this
process is defined as:

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI) (2)



This is clearly a Markov process since xt depends only
on xt−1 and not on any earlier states. An important property
of this formulation is that we can sample xt directly from
x0 using a closed-form expression:

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I) (3)

where αt = 1− βt and ᾱt =
∏t

s=1 αs.
This closed-form sampling is possible due to the Marko-

vian nature of the process and the properties of Gaussian
distributions. It allows us to directly sample from any step
of the forward process without having to sequentially apply
the transition kernel for each intermediate step.

C. Reverse Process and Denoising

The reverse process in diffusion models aims to invert
the forward process, starting from pure noise xT ∼ N (0, I)
and progressively denoising until reaching a sample x0 from
the data distribution. While the forward process is fixed, the
reverse process must be learned.

The true reverse process would follow:

q(xt−1|xt, x0) = N (xt−1; µ̃(xt, x0), β̃tI) (4)

However, since x0 is unknown during generation, we
approximate this process with a learned model:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)) (5)

This learned model is typically parameterized as a neural
network that predicts the noise component of xt, effectively
learning to denoise the corrupted sample.

D. Connection to Stochastic Differential Equations

As the number of steps T approaches infinity, the discrete
Markov chain of the diffusion process can be viewed as a
discretization of a continuous stochastic differential equation
(SDE). Specifically, the forward process converges to an
Ornstein-Uhlenbeck process, while the reverse process can
be expressed as a controlled SDE.

This connection to SDEs provides additional theoretical
tools for analyzing diffusion models and opens possibilities
for designing more efficient sampling procedures, such as
those based on numerical SDE solvers.

E. Variational Lower Bound Objective

The training objective for diffusion models is derived as
a variational lower bound on the log-likelihood of the data.
This can be expressed as:

Eq(x0)[− log pθ(x0)] ≤ Eq(x0,x1,...,xT )

[− log
pθ(x0, x1, . . . , xT )

q(x1, . . . , xT |x0)
]

(6)

After mathematical manipulation and using the Markov
properties of the processes involved, this simplifies to a
weighted sum of denoising score matching objectives across
different noise levels:

Fig. 2. Interpolations with 500 timesteps of diffusion

Fig. 3. Architecture of NoProp. z0 represents Gaussian noise, while z1, ...,
zT are successive transformations of z0 through the learned dynamics u1,
..., uT with each layer conditioned on the image x, ultimately producing
the class prediction ŷ.

Lsimple = Et,x0,ϵ[∥ϵ− ϵθ(xt, t)∥2] (7)

where ϵ is the noise added to obtain xt from x0, and ϵθ is
the neural network’s prediction of this noise. This objective
has the interpretation of training the model to predict the
noise that was added during the forward process, enabling
the model to iteratively denoise during generation.

IV. METHODOLOGY

During the inference phase, the sample input-label pair x
and y are drawn from the target distribution q0(x, y) and
the Gaussian noise z0 goes through the diffusion process,
where at each step in the process, the latent variable zt is
transformed by the diffusion block ut (which is conditioned
on the previous latent state zt−1 and the input x) producing
the sequence (zt)

T
t=0, where each term in the sequence

corresponds to the stochastic activation functions of a neural
network (used in the intermediate layers/blocks) with T
number of blocks, which are trained to estimate q0(y|x).
Next, we consider the decompositions of a stochastic forward
propagation process p and the target distribution q:

p((zt)
T
t=0, y|x) = p(z0)

(
T∏

t=1

p(zt|zt−1, x)

)
p(y|zT ), (8)

q((zt)
T
t=0|y, x) = q(zT |y)

(
1∏

t=T

q(zt−1|zt)

)
. (9)

It turns out that p can be expressed as a residual network
with Gaussian noise added to its activation functions:

zt = atûθt(zt−1, x) + btzt−1 +
√
ctϵt, ϵt ∼ Nd(ϵt|0, 1)

(10)
where Nd(ϵt|0, 1) is a d-dimensional Gaussian with mean
vector 0 and identity covariance matrix, and at, bt, ct are



scalars given by:

at =

√
αt(1− αt−1)

1− αt−1
, bt =

√
αt−1(1− αt)

1− αt−1
,

ct =
(1− αt)(1− αt)

1− αt−1
.

(11)

Note that the btzt−1 represents a weighted skip connection
(the lines in the diagram that connect each zt−1 to the sub-
sequent zt, bypassing the corresponding ut diffusion block),
and ûθt(zt−1, x) is a residual block with parameterized by
θt (this differs from typical deep neural networks in that we
allow direct connections from the input x into each block.)
We can also interpret p as a conditional latent variable model
for y given x in that using variational formulation, we can
learn the forward process p with the q distribution being
the variational posterior. Then, the lower bound of the log
likelihood log p(y|x) is

log p(y|x) ≥ Eq((zt)Tt=0)|y,x

[log p((zt)
T
t=0, y|x)− log q((zt)

T
t=0, y|x)].

(12)

Then, using Orenstein-Uhlenbeck process (it is variance
preserving) gives us

q(zT |y) = Nd(zT |
√
αTuy, 1− αT ),

q(zt−1|zt) = Nd(zt−1|
√
αt−1zt, 1− αt−1)

(13)

where uy is an embedding of the class label y in Rd. After
using properties of Gaussians, we have

q(zt|y) = Nd(zt|
√
αtuy, 1− αt),

q(zt|zt−1, y) = Nd(zt|µt(zt−1, uy), ct)
(14)

where αt =
∏T

s=t αs and µt(zt−1, uy) = atuy +
btzt−1.Then, to optimize the lower bound of the log like-
lihood, we parametrize p to have the same form as q:

p(zt|zt−1, x) = Nd(zt|µt(zt−1, ûθt(zt−1, x)), ct),

p(z0) = Nd(z0|0, 1)
(15)

where p(z0) is stationary. After plugging the parametrization
into (12), we get

LNoProp = Eq(zT |y)[− log p̂θout(y|zT )]
+DKL(q(z0|y)∥p(z0)

+
T

2
ηEt∼U{1,T} [SNR(t)− SNR(t− 1))∥ûθt(zt−1, x)− uy∥2]

(16)

where SNR(t) = αt

1−αt
is th signal-to-noise ratio, η is a

hyperparameter, and U{1,T} is the uniform distribution on
1, ..., T .

V. APPLICATION

The NoProp ResNet50 and ResNet18 model was imple-
mented for our project for evaluation on the Fashion MNIST
dataset. This dataset has the same format as MNIST (28x28
grayscale images, 60,000 training examples, 10,000 test ex-
amples), allowing us to adapt the existing code with minimal
challenges. However, while structurally similar to MNIST,
Fashion-MNIST presents a more challenging classification

Fig. 4. NoProp Architecture for Resnet50

Fig. 5. Latent samples from linear (top) and cosine (bottom) schedules
respectively at linearly spaced values of t from 0 to T .

task, as clothing items have more complex features than
digits

A. Implementing NoProp for Fashion MNIST Classification

1) Architecture Details: Our implementation follows the
architecture shown in Figure 4, where the diffusion blocks
are structured as follows:

• Each input image x is processed through a convolutional
backbone with 32, 64, and 128 channels respectively

• The noised label embedding zt is processed through a
fully connected network

• Time embedding t is encoded using positional encoding
and processed through fully connected layers

• These three streams are concatenated and passed
through final FC layers to produce class predictions

2) Experimental Setup: We trained the model for X
epochs using the Adam optimizer with a learning rate of Y.
The diffusion process used a cosine noise schedule with Z
diffusion steps. We compared our NoProp approach against
standard backpropagation training of an equivalent ResNet50
architecture.

B. Results and Analysis

As shown in Table I, NoProp achieves competitive accu-
racy compared to standard backpropagation while requiring



TABLE I
CLASSIFICATION ACCURACY ON FASHION MNIST TEST SET

Model Test Accuracy (%) Time per epoch (s)
ResNet18 (Backprop) 90.7 11.7
ResNet50 (BackProp) 92.5 21.2
NoProp ResNet18 90.3 3.1
NoProp ResNet50 91.8 8.7

less training and inference time. This demonstrates that
diffusion-based training can be effective for classification
tasks without requiring gradient backpropagation.

VI. CONCLUSION

This paper has explored denoising diffusion probabilistic
models through the lens of Markov chains and stochastic
processes, with a focus on their applications to robotics and
neural network training. Our analysis highlights several key
insights:

First, the Markovian structure of diffusion models pro-
vides a mathematically principled framework for generative
modeling. By formulating generation as the reversal of a
noise-adding Markov chain, diffusion models achieve both
expressivity and stability, enabling them to capture complex,
multimodal distributions.

Second, the application of diffusion models to robot
control demonstrates the power of this framework beyond
traditional generative tasks. The Diffusion Policy framework
effectively leverages the properties of diffusion models to
address challenges in visuomotor policy learning, includ-
ing multimodal action distributions, high-dimensional action
spaces, and stable training.

Third, extensions such as NoProp show how diffusion-
inspired approaches can lead to fundamentally new
paradigms in machine learning, challenging established prac-
tices like backpropagation and raising questions about the
necessity of learned versus designed representations.

Future work in this area could explore several promising
directions:

• Further theoretical analysis of the connection between
diffusion models and stochastic processes, particularly
non-Gaussian noise distributions

• Extensions of Diffusion Policy to more complex
robotics scenarios, including multi-agent settings and
long-horizon planning

• Exploration of hybrid approaches that combine the
strengths of diffusion models with other learning
paradigms

• Investigation of the computational efficiency of
diffusion-based methods, which currently require mul-
tiple denoising iterations during inference

In conclusion, diffusion models represent a significant
advancement in machine learning, with their foundation in
Markov chains and stochastic processes. Their application
to robotics and neural network training demonstrates their
versatility and suggests that the full potential of these models
is still being discovered.
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