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ABSTRACT
Accurate pose estimation remains a fundamental challenge in robotic

perception and computer vision, particularly in complex environ-

ments with varying viewpoints and object symmetries. Traditional

approaches often rely on supervised methods requiring extensive

labeled data and struggle with ambiguities arising from different

viewing angles and object properties. In this paper, we propose a

framework that leverages causal reasoning to enhance pose esti-

mation through principled refinement. By incorporating structural

causal models (SCM) into the refinement process, our approach

explicitly models key factors affecting pose estimation and their

relationships. The proposed architecture employs targeted interven-

tions to handle view changes and symmetries, while using backdoor

adjustment to mitigate the impact of confounding factors. Through

experimental validation on benchmark datasets, we demonstrate

that our causal refinement approach improves the robustness and

accuracy of initial pose estimates. Code is available at: Causal
Dense Fusion

1 INTRODUCTION
Accurate pose estimation - determining the six degrees of free-

dom (6D) of an object comprising its position and orientation - is

essential for applications ranging from robotic manipulation to aug-

mented reality. Despite significant progress in deep learning-based

methods [2, 13], robust pose estimation remains challenging due

to fundamental issues such as viewpoint ambiguity, object sym-

metries, and environmental factors that confound the estimation

process.

Traditional pose estimation methodologies predominantly rely

on supervised learning techniques that require large-scale labeled

datasets. Although these methods have achieved notable results in

controlled settings [4, 6], they often struggle in real-world scenar-

ios characterized by varying viewpoints, symmetric objects, and

complex environmental conditions. State-of-the-art approaches like

DenseFusion [13] effectively combine RGB and point cloud features

but may still produce suboptimal estimates that require refinement.

Recent work has shown that incorporating causal reasoning into

deep learning architectures can enhance robustness and generaliza-

tion [12, 14]. However, existing pose estimation methods typically

treat different error sources - such as view changes, symmetries,

and environmental factors - as independent problems, leading to

suboptimal solutions. We argue that these challenges are funda-

mentally interconnected through causal relationships in the pose

estimation process.

To address these challenges, we propose a novel framework

that integrates causal reasoning into the pose estimation and ob-

ject tracking pipeline. Using structural causal models (SCM), our

approach explicitly models the cause-and-effect relationships be-

tween geometric features, pose residuals, and refinement updates.

This causal framework enhances the model’s ability to handle view

changes and object symmetries through targeted interventions,

while mitigating the impact of confounding environmental fac-

tors via backdoor adjustment. Furthermore, our method employs a

Causality-Based Pose Refinement Network, termed Causal Point-
Net, which refines initial pose estimates by incorporating causal

interventions, that builds upon DenseFusion’s initial estimates to

improve robustness and accuracy in dynamic settings

The primary contributions of this paper are:

• Causal Refinement Framework: Introducing a causality-

aware refinement architecture that models key factors af-

fecting pose estimation and their relationships

• Structural Causal Model: Developing an SCM-based ap-

proach that enables principled intervention and adjustment

strategies for handling view changes, symmetries, and con-

founding factors

• Intervention Mechanisms: Proposing specific interven-

tion techniques for handling viewpoint changes and object

symmetries within the refinement process

• Comprehensive Evaluation: Demonstrating the effective-

ness of our causal refinement approach through extensive

experiments on the YCB-Video dataset

Through these contributions, our work advances the field of pose

estimation and object tracking by embedding causal reasoning into

the core of the learning process, thereby addressing fundamental

limitations of existing supervised approaches.

2 RELATEDWORKS
2.1 Pose Estimation and Object Tracking
2.1.1 Classical Approaches. Early work on pose estimation focused

on geometric techniques like PnP (Perspective-n-Point) [6], which

solve for camera pose using 2D-3D point correspondences. While

mathematically elegant, these methods often struggle with noise

and require reliable point matching.

2.1.2 Deep Learning Methods. The advent of deep learning has

led to end-to-end trainable pose estimation networks. PoseNet [4]

pioneered CNN-based pose regression, while later works like PVNet

[10] introduced voting-based keypoint localization. However, these

methods often struggle with viewpoint ambiguity and symmetric

objects.

2.1.3 Pose Estimation from RGB-D Data. Combining RGB and

depth (RGB-D) data harnesses the complementary strengths of both

modalities, enhancing pose estimation performance. Techniques

https://github.com/bryceag11/CausalDenseFusion
https://github.com/bryceag11/CausalDenseFusion
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Figure 1: Causality-Combined Latent Space Sampling

like DenseFusion integrate RGB and depth features at multiple

stages of the network, enabling detailed per-pixel correspondence

and robust pose predictions [13] while PVN3D [2] extended this

to 3D keypoint prediction. Our work builds upon DenseFusion by

adding causal refinement to the pipeline.

2.2 Pose Refinement Approaches
Several works have explored iterative refinement of initial pose esti-

mates. DeepIM [7] uses render-and-compare for refinement, while

CosyPose [5] employs multi-view consistency. However, these ap-

proaches typically lack a principled framework for handling differ-

ent sources of error.

2.3 Causal Inference in Computer Vision
2.3.1 Theoretical Foundations. The integration of causality in ma-

chine learning has gained momentum following seminal works by

Pearl [8] and Schölkopf [12]. These frameworks provide tools for

modeling interventions and handling confounding factors.

2.3.2 Applications in Vision. Recent works have applied causal

principles to various vision tasks. CausalVAE [14] introduced struc-

tural causal models for disentangled representation learning, while

[11] explored causality for visual reasoning. Our work extends these

ideas to geometric problems in pose estimation.

2.4 Key Challenges and Limitations
While significant progress has beenmade in pose estimation, several

fundamental challenges remain:

• View Ambiguity: Methods struggle to maintain consistent

estimates across viewpoints

• Symmetry Handling: Standard regression approaches of-

ten fail with symmetric objects

• Environmental Factors: Lighting, occlusions, and other

conditions create spurious correlations

• Limited Generalization: Current methods often fail to

generalize beyond training conditions

Ourwork addresses these challenges through a unified causal frame-

work, rather than treating them as independent problems. By mod-

eling the underlying causal structure of pose estimation, we enable

more robust and interpretable refinement.

2.5 Limitations of Existing Approaches
While significant progress has been made in pose estimation and

object tracking, existing methods predominantly rely on supervised

learning paradigms that are susceptible to overfitting, limited gener-

alization, and dependence on extensive labeled datasets. Moreover,

they often fail to account for the underlying causal mechanisms

that govern object dynamics and interactions, leading to brittleness

in complex and dynamic environments [9]. By neglecting causality,

these models may struggle to disentangle genuine object move-

ments from spurious correlations introduced by environmental

factors [3]. Our proposed framework addresses these limitations

by embedding causal reasoning into the pose estimation and track-

ing pipeline, thereby enhancing robustness, interpretability, and

generalization.
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3 METHODOLOGY
3.1 Motivation and Background
6D pose estimation faces several fundamental challenges that moti-

vate our causal approach:

• View Ambiguity: Traditional methods struggle with view-

point changes, leading to inconsistent pose estimates across

different camera perspectives

• Symmetry Handling: Objects with symmetries create mul-

tiple valid poses, confounding standard regression approaches

• Domain Gaps: The disconnect between synthetic training

data and real-world conditions leads to poor generalization

• Confounding Factors: Environmental conditions like light-

ing and occlusions create spurious correlations in learned

features

Current refinement approaches treat these as independent prob-

lems, leading to suboptimal solutions. We argue these challenges

are fundamentally interconnected through causal relationships in

the pose estimation process.

3.2 Problem Formulation
Given an RGB image 𝐼 ∈ R𝐻×𝑊 ×3

, point cloud P = 𝑝𝑖
𝑁
𝑖=1

⊂ R3
,

and initial pose estimate 𝜃0 = (𝑅0, 𝑡0) ∈ 𝑆𝐸 (3) from DenseFusion,

our goal is to learn a refinement function 𝑓 : (𝐼 ,P, 𝜃0) ↦→ 𝜃 that

produces the refined pose 𝜃 = (𝑅, 𝑡). We formulate this as a causal

inference problem rather than direct regression.

3.3 Causal Framework
3.3.1 Structural CausalModel. We formalize pose refinement through

an SCM M = ⟨U,V, F , 𝑃 (U)⟩ where:
• Exogenous variables U = 𝑈𝐺 ,𝑈𝑅,𝑈𝜃 capture independent

noise

• Endogenous variablesV = 𝐺, 𝑅, 𝛿𝜃, 𝜃 represent system states

• Causal mechanisms F = 𝑓1, 𝑓2, 𝑓3, 𝑔 implement refinement

steps

• 𝑃 (U) specifies noise distributions
The structural equations define our generative process:

𝐺 = 𝑓1 (P,𝑈𝐺 ) (1)

(Geometric Feature Extraction)

𝑅 = 𝑓2 (𝐺, 𝜃0,𝑈𝑅) (2)

(Residual Computation)

𝛿𝜃 = 𝑓3 (𝑅,𝑈𝜃 ) (3)

(Pose Update Generation)

𝜃 = 𝑔(𝜃0, 𝛿𝜃 ) (4)

(Pose Composition)

3.4 Network Architecture
3.4.1 Geometric Feature Extractor. The feature extractor 𝑓1 is de-
signed to be equivariant to 𝑆𝐸 (3) transformations while capturing

local geometric structure:

𝑓1 (P) = 𝜙 (𝛾 (𝜓 (P))) (5)

where:

• 𝜓 (·): Local feature extraction via EdgeConv

• 𝛾 (·): Graph message passing for context

• 𝜙 (·): Global feature aggregation
The EdgeConv operation preserves local structure:

EdgeConv(𝑥𝑖 ) = max

𝑗∈N(𝑖 )
ℎ𝜃 ( [𝑥𝑖 |𝑥 𝑗 − 𝑥𝑖 ]) (6)

where ℎ𝜃 is an MLP and N(𝑖) defines the local neighborhood.

3.4.2 Residual Network. The residual network 𝑓2 identifies geo-

metric inconsistencies through:

𝑓2 (𝐺, 𝜃0) = MLP( [𝐺 |PE(𝜃0)]) (7)

with positional encoding PE(·) that maintains 𝑆𝐸 (3) structure:

PE(𝜃 ) = [sin(𝜔𝑘𝑅) | cos(𝜔𝑘𝑅) |𝑡]𝐾𝑘=1 (8)

3.4.3 Pose Update Network. The pose update network 𝑓3 generates

refinements through a multi-scale architecture:

𝑓3 (𝑅) = MLP( [Poolmax(𝑅) |Poolavg(𝑅) |𝑅]) (9)

3.4.4 View Intervention. We implement stochastic view interven-

tions through rotation transformations:

𝑑𝑜 (P = 𝑇𝑣P), 𝑇𝑣 ∼ 𝑆𝑂 (3) (10)

where 𝑇𝑣 represents a random rotation matrix sampled uniformly

from 𝑆𝑂 (3).

3.4.5 Symmetry Intervention. For symmetric objects, we apply

structured transformations based on the object’s symmetry proper-

ties:

𝑑𝑜 (P = 𝑇𝑠P), 𝑇𝑠 ∈ Sym(𝑜) (11)

The symmetry group Sym(𝑜) is object-dependent:
• Cyclic symmetry: 𝑇𝑠 = 𝑅 2𝜋𝑘

𝑛

|𝑘 = 1, ..., 𝑛

• Reflective symmetry: 𝑇𝑠 = 𝐼 , 𝑅𝜋
• Continuous symmetry: 𝑇𝑠 = 𝑅𝜃 |𝜃 ∈ [0, 2𝜋]

3.5 Learning Objective
Our total loss combines multiple causal components:

Ltotal = 𝜆1Lpose + 𝜆2Lview + 𝜆3Lsym + 𝜆4Lbackdoor
(12)

where:

Lpose = |𝑇𝜃 (M) −𝑇
𝜃
(M)|22 (13)

Lview = E𝑇𝑣 [|𝑓1 (𝑇𝑣P) −𝑇𝑣 𝑓1 (P)|22] (14)

Lsym = E𝑇𝑠 [|𝑓1 (𝑇𝑠P) −𝑇𝑠 𝑓1 (P)|2
2
] (15)

To handle confounding between geometric features and pose up-

dates, we employ backdoor adjustment through an MMD loss:

L
backdoor

= MMD(𝑃 (𝑅 |𝑑𝑜 (𝐺)), 𝑃 (𝑅 |𝐺)) (16)

with RBF kernel 𝑘 (𝑥,𝑦) = exp(−𝛾 |𝑥 − 𝑦 |2).

3.6 Theoretical Properties
Theorem 3.1 (Identifiability of Pose Updates). Under the

proposed SCM, if 𝑅 satisfies the backdoor criterion relative to (𝐺, 𝛿𝜃 ),
then 𝑃 (𝛿𝜃 |𝑑𝑜 (𝐺)) is identifiable from observational data.
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Proof. By the backdoor criterion, 𝑅 blocks all backdoor paths

from 𝐺 to 𝛿𝜃 and contains no descendants of 𝐺 . Therefore:

𝑃 (𝛿𝜃 |𝑑𝑜 (𝐺)) =
∑︁
𝑅

𝑃 (𝛿𝜃 |𝐺, 𝑅)𝑃 (𝑅) (17)

which is estimable from observational data. □

Theorem 3.2 (SE(3) Eqivariance). For any 𝑇 ∈ 𝑆𝐸 (3), there
exists a linear transformation 𝐿𝑇 such that 𝑓1 (𝑇P) = 𝐿𝑇 𝑓1 (P).

Proof. The EdgeConv operation preserves equivariance through

relative position encoding:

EdgeConv(𝑇𝑥𝑖 ) = 𝑇 · EdgeConv(𝑥𝑖 ) (18)

Combined with permutation-invariant global pooling, this ensures

overall SE(3) equivariance. □

Theorem 3.3 (BackdoorAdjustmentConsistency). TheMMD-
based backdoor adjustment estimator is consistent as 𝑛 → ∞ under
standard regularity conditions.

Proof. Due to the characteristic property of the RBF kernel and

proper distance properties of MMD:

MMD(𝑃 (𝑅 |𝑑𝑜 (𝐺)), 𝑃 (𝑅 |𝐺)) → 0 (19)

ensuring consistent estimation of the causal effect. □

3.7 Implementation Details
3.7.1 Network Architecture.

• Geometric Feature Extractor
– Input layer: Point cloud P ∈ R𝑁×3

– EdgeConv blocks: (64, 128, 256) channels

– Graph attention: 8 heads with dim 32

– Output: 512-dimensional features

• Pose Update Network
– Residual encoder: (256, 512, 1024) units

– Cross-attention: 4 heads

– Quaternion decoder with normalization

– Skip connections from initial pose

3.7.2 Training Protocol. We employ a three-phase training strat-

egy:

(1) Pretraining Phase
• Train feature extractor with Lview

• Initialize with synthetic data

• Learning rate: 1 × 10
−4

with AdamW

(2) Joint Training Phase
• End-to-end with Lpose, Lsym

• Batch size: 32 with sync BatchNorm

• Gradient accumulation: 4 steps

• Mixed precision training

(3) Causal Fine-tuning Phase
• Introduce Lbackdoor gradually

• Fixed intervention sampling

• Early stopping on validation

The computational complexity scales as:

O(𝑁𝑝 log𝑁𝑝 + 𝑁𝑝𝐷 + 𝐷2) (20)

where 𝑁𝑝 is the number of points and 𝐷 is the feature dimension.

Memory requirements follow:

Memory(𝑁𝑝 ) = 𝛼𝑁𝑝 + 𝛽𝐷 + 𝛾 (21)

where 𝛼 , 𝛽 , and 𝛾 are architecture-dependent constants.

4 EVALUATION AND EXPERIMENTS
4.1 Experiments
Our approach builds upon the DenseFusion framework, leveraging

its dense fusion of RGB and depth features for initial pose predic-

tions. Then, the refinement upon the pretrained model is preformed

by the causal refinement network, which optimizes pose corrections

using a learnable structure based on causal reasoning as introduced

in earlier sections.

We used YCB-Video dataset[1] for training and evaluating in this

study. The YCB-Video dataset is a widely recognized benchmark

for pose estimation tasks. It consists of 92 RGB-D video sequences

of 21 everyday objects with varying shapes and textures. These

sequences capture objects in diverse indoor scenes under varying

occlusion and lighting conditions. Each frame includes annotated

6D poses and object segmentation masks. To ensure alignment with

the standard DenseFusion framework, our experimental setup uses

the same training and testing splits as defined in the paper, which

are 80 videos and 80000 images for training, and 2949 keytrames

from the remaining 12 videos for testing.

In the pretraining phase, the DenseFusion backbone is trained

until it converges. Once convergence is achieved at the 250th epoch,

the backbone parameters are frozen, and the newly added causal

refinement network is optimized. This two-stage training strategy

ensures that the refinement network focuses entirely on improving

pose predictions using the pretrained backbone as a reliable feature

extractor.

4.2 Results and Discussions

Figure 2: The validation loss and distance between the true
and prediction over epochs

In the refinement process, we recorded several key metrics to eval-

uate the performance of the causal refinement network, as shown

in Figure 2. The first measurement is the original distance, mea-

suring the prediction error of the frozen DenseFusion backbone.

The second key metric is the average distance, which reflects the
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Figure 3: Visualization for the estimated pose by pretrained model and refined model (Scene 1)

Figure 4: Visualization for the estimated pose by pretrained model and refined model (Scene 2)

prediction error after applying the causal refinement network. This

metric captures the improvement achieved by leveraging the rea-

soning features extracted from the backbone to optimize the pose

predictions. During training, we observed that the training loss ini-

tially blow out when the refinement network was activated. And as

training progressed, the loss iteratively decreased, ending up with

a convergence and a better distance compared to the origoinal pre-

diction.The best average error achieved by the refinement network

is 0.051, a substantial improvement over the backbone’s original

error of 0.069, which showing the causal block’s capability of opti-

mization.

To validate the performance of our causal refinement network,

we visualize the predicted poses directly on real objects, as shown

in Figure 3 and 4. These visualizations compare the pose predictions

of the pretrained DenseFusion backbone (left) with those refined

by the causal refinement network (right). By selecting objects the

YCB-Video dataset, we can predict their pose by the given RGB-D

image and plot the prediction on the top of the real image.

In Figure 3, the original DenseFusion backbone struggles to

predict the mug’s orientation accurately, particularly due to the

object’s symmetric design and occlusion from surrounding items.

Symmetric objects like the mug often lead to ambiguous predictions

as the backbone lacks the iterative reasoning mechanism to resolve

such ambiguities. While the refined prediction from causal block

provides it in a more accurate orientation alignment. Similarly in

Figure 4, both the translation and orientation of the object are

significantly improved by the causal refinement network.

5 CONCLUSION
In this paper, we presented a novel framework for enhancing pose

estimation through causal reasoning. Our approach makes three

key contributions to the field. First, we introduced a structural
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causal model that explicitly captures the relationships between

geometric features, pose updates, and various confounding fac-

tors. This theoretical foundation enables principled handling of

view changes and object symmetries through targeted interven-

tions. Second, we developed a practical implementation combining

the strengths of DenseFusion’s initial estimates with our causal

refinement network. The refinement process leverages backdoor

adjustment and carefully designed interventions to improve robust-

ness against viewpoint changes and symmetries. Our experimental

results on the YCB-Video dataset demonstrate that this causal ap-

proach leads to more accurate and reliable pose estimates. Finally,

we provided theoretical guarantees for our framework, proving the

identifiability of causal effects and the equivariance properties of

our geometric feature extractor. These theoretical results ensure

that our method maintains desirable properties while handling real-

world challenges in pose estimation. Future work could extend this

framework in several directions:

• Incorporating temporal dynamics for video sequences

• Expanding the intervention types to handle more complex

object properties

• Developing more sophisticated backdoor adjustment tech-

niques for high-dimensional features

• Integrating uncertainty estimation into the causal frame-

work

Our work demonstrates the potential of causal reasoning to en-

hance geometric computer vision tasks, opening new avenues for

robust and interpretable pose estimation methods. The principles

introduced here could be extended to other vision tasks where

understanding and leveraging causal relationships could improve

performance and reliability.
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